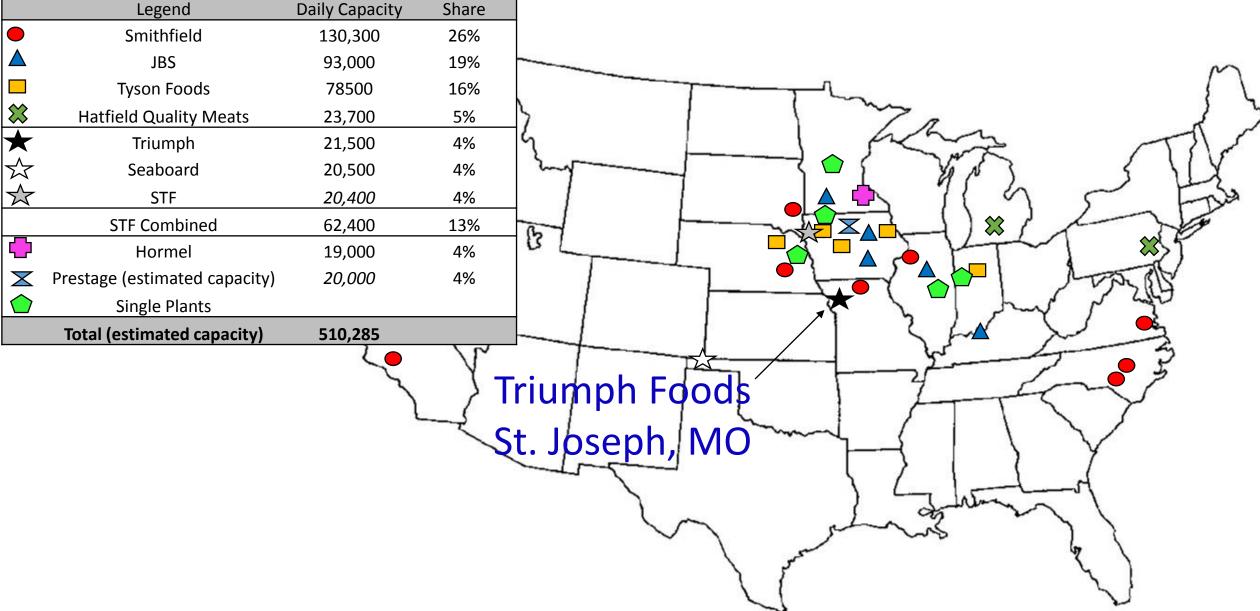


Triumph Foods Integrated Pork Production

Who is Triumph Foods?

- 100% Owned by pork producers
- 5 Member owners
 - 37 Pork producers
 - Allied Producers Cooperative = 33 Producers
- <u>NO</u> outside ownership


CHRISTENSE

Why was Triumph Foods Organized?

- Pork producers are subject to tremendous volatility and uncertainty
- Pork processing is highly concentrated
- Opportunity for returns with the right strategy

Triumph + Seaboard = 795,000 Sows

	TOP 40 U.S. PORK POWERHOUSES® 2018		
2018	Company / Headquarters	# Sows 2018	# Sows 2017
1	Smithfield Foods/WH Group / Smithfield, VA/China (also 147,675 sows in Mexico; 95,100 in Poland; 52,350 in Romania; worldwide total: 1,245,125 sows)	950,000	910,000
2	Seaboard Foods / Shawnee Mission, KS	340,000	325,000
3	Pipestone System / Pipestone, MN	251,000	240,000
4	Iowa Select Farms / Iowa Falls, IA	235,000	207,000
5	The Maschhoffs / Carlyle, IL	204,000	218,000
6	Prestage Farms / Clinton, NC	182,300	175,000
7	Carthage System / Carthage, IL	180,000	175,000
8	JBS / Brazil/Greeley, CO	167,500	166,570
9	Christensen Farms / Sleepy Eye, MN (an owner of Triumph Foods)	142,500	142,500
10	AMVC Management Services / Audubon, IA	135,500	117,500
11	Allied Producers' Cooperative / Westside, IA (an owner of Triumph Foods)	102,500	94,000
12	The Hanor Company / Enid, OK (an owner of Triumph Foods)	100,000	80,000
13	Maxwell Foods / Goldsboro, NC	99,000	101,000
14	Tyson Foods / Springdale, AR	80,000	64,000
15	Clemens Food Group / Hatfield, PA	66,330	62,330
16	TriOak Foods / Oakville, IA	66,000	59,500
17	Schwartz Farms / Sleepy Eye, MN	62,000	62,000
18	Holden Farms / Northfield, MN	60,000	60,000
19	New Fashion Pork / Jackson, MN (an owner of Triumph Foods)	57,000	57,000
20	Pillen Family Farms / Columbus, NE	55,000	55,000
21	Wakefield Pork / Gaylord, MN	54,800	52,400
22	Standard Nutrition Services / Emmetsburg, IA	54,000	47,150
23	Eichelberger Farms / Wayland, IA (an owner of Triumph Foods)	53,000	46,000

Smithfield Foods Inc. Smithfield

United States — 1,241,000 sows Smithfield Foods is a \$15 billion global food company and the world's largest pork professor and hog producer. Based in Smithfield Va., the company was started in 1936 by the Luter family. Smithfield encloys more than 54,000 people in North America and Europe. The company ships meat exports to 4,600 customers in 40 countries around the globe. Smithfield is a subsidiary of WH Group, and these sow numbers are in addition to WH Group's

Wens

other company sow production numbers.

Established in 1983, Wens has week docume become a modern agricultural firm, with its main business in livestock farming. Other supporting segments including financial investment, production of agricultural and husbandry equipment, pharmaceuticals, livestock breeding, food processing, promotion of fresh products, etc. Wens produced 22.3 million hogs in 2018. The company's mission is to be a "company plus family farms," and it implements a "onestop business model" to operate and manage its integrated industrial chain.

CP Foods China — 800.000 sows

The Charoen Pokphand Group is a diversified transnational conglomerate that consists of three core businesses that operate in the

agri-food industry, retail and distribution, and telecommunications, as well as involvement in 10 additional industries such as finance, real estate, pharmacy, etc. CP Foods conducts business in more than 100 countries and employs more than 350,000 employees around the world. CP Group's revenue from the agri-food sector totaled \$5,6 million, with 65.6% coming from China and 34.5% from Thailand and Vietnam. In 2018, CP China produced 2.8 million hogs, mainly from the Hubei, Henan and Shanxi provinces.

Muyuan China — 680.000 sows

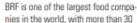
Muyuan Foodstuff Company Ltd. was established in 1992 and formed its pork production business model as "self-

farming and multiplication, large-scale integration." Currently, the company has 88 wholly owned subsidiary companies and two joint stock companies. In 2018, the company marketed 11.01 million hogs and established an annual capacity of producing 5 million tons of feed and slaughtering 1 million hogs. The company has formed a completely closed pig production industrial chain integrated with research and development, feed processing, breeding pig multiplication and commercial pig farming.

Triumph Foods United States — 487,200 sows

Triumph Foods was formed in 2003 by a group of the largest U.S. independent pork producers, with operations beginning in 2006, and it is now the secondlargest pork processor in the United States. Its goal was to establish a fully integrated pork industry model. Today, the business includes one processing facility in St. Joseph, Mo., along with a joint venture plant with Seaboard Foods in croux City, toru, as well as three further processing facilities under Daily's Premium Meats.

Zhengbang Group China — 400,000 sows


Founded in 1996, Zhengbang Group is a national agricultural industrialization-leading enterprise with headquarters in Nanchang

正邦集团

BRF Brazil — 400,000 sows

Ś

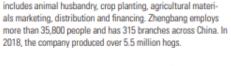
CPF

brands in its portfolio. BRF is the result of a merger between Sadia and Perdigão, two of the primary food companies in Brazil. As the process was concluded, both Sadia and Perdigão stopped functioning as independent companies and became subsumed as brands under BRF's portfolio.

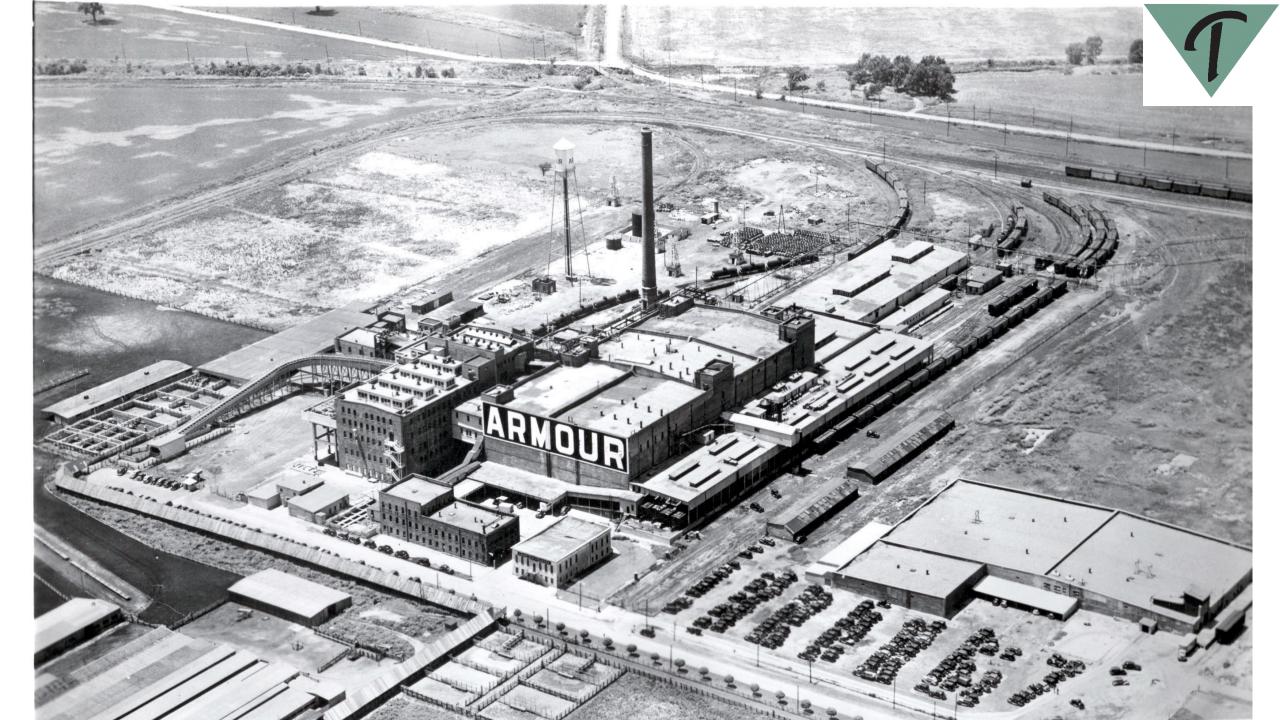
Seaboard Foods United States — 340,000 sows Seaboard Foods is an integrated

cooperative with headquarters in

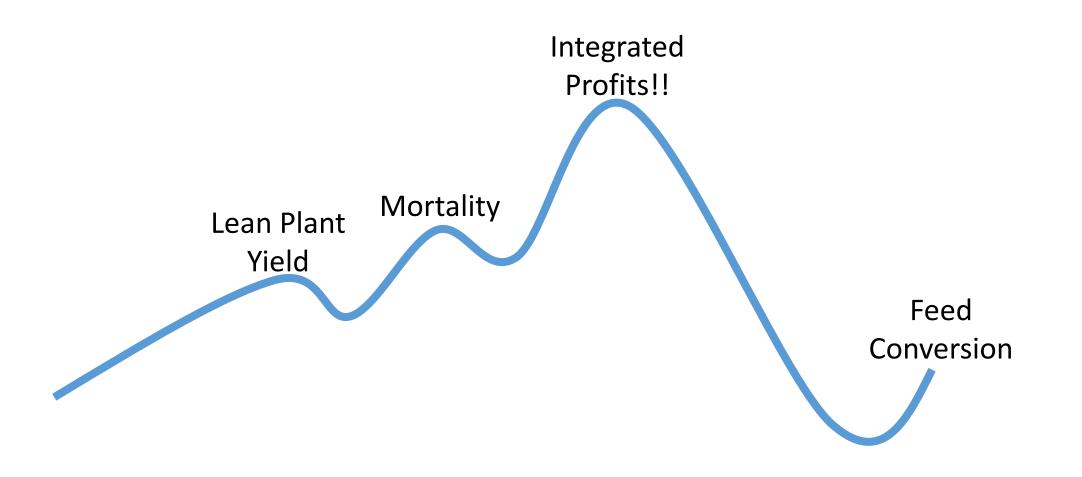
SEAB ARD


brf

food company producing and marketing pork both domestically and internationally. Seaboard has processing facilities in Guymon, Okla., and Sioux City, Iowa, as well as further processing at its co-owned facility with Triumph Foods, Daily's Premium Meats. Seaboard has 5,200 employees and operates in numerous states.


世界会員数分有数公司 ation." Currently, compension and Cooperl is a private agricultural

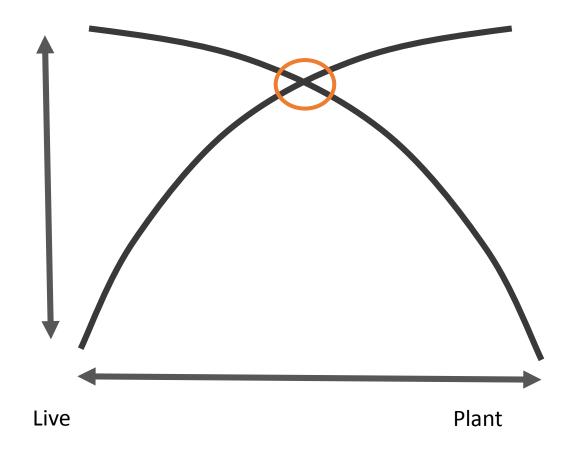
the Brittany region of France. The company was founded in 1966 by 24 farmers, and today it has 2,700 members producing 5,5 million pigs. As the leading integrated pork producer in Europe, it has aggressively invested in specialized pig production through feed mills, packing plants and stores.


City, Jiangxi Province, China. The main scope of business

Critical Resource is Trust – Avoid Local Optimization

Market Hog Production Requirements

- All producers must be PQA Plus certified
- ONLY approved genetics can be used
- ONLY approved feed ingredients can be used
- ONLY approved medications can be used


Qualifying Market Hog

- Live weight requirement
 - 215 lbs. to 350 lbs.
- Must be free from defects and comply with our USDA voluntary segregation procedure
- Same criteria since 2006

TR4 Program – Custom Genetic Improvement

The objective of the TR4 genetic program is to maximize returns over our integrated production system

When the Strategy Works, Keep After It...

Daily's Premium Meats

• Recent Ownership History:

- 2005 Acquired by Seaboard Foods
- 2014 Triumph purchased 50% interest from Seaboard Foods

• Products

Primarily raw and precooked bacon

× Jane

Seaboard Triumph Foods

Equal partnership among Seaboard and Triumph

Located in Sioux City, IA

Example of a Core Integrated Strategy...

Why Heavy Weights are the Future of Pig Production

2017 Global Pork Production

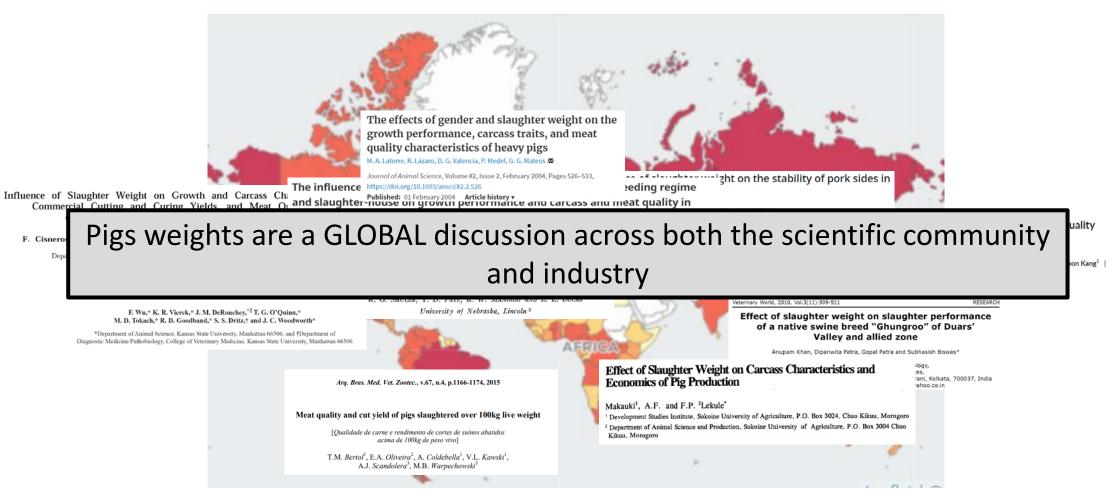
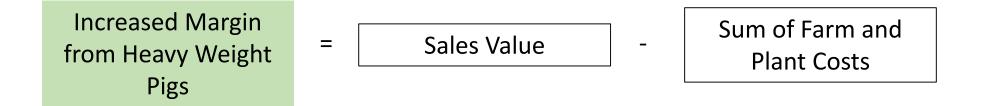
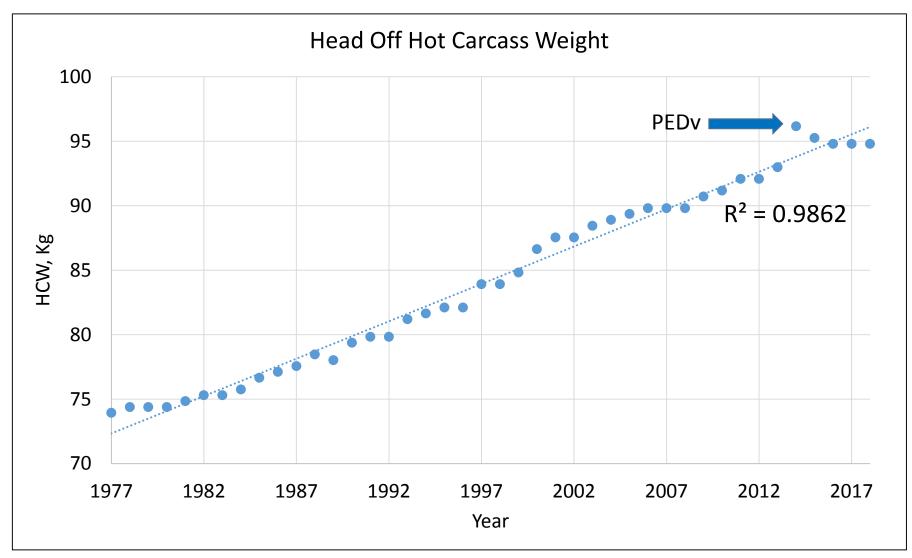
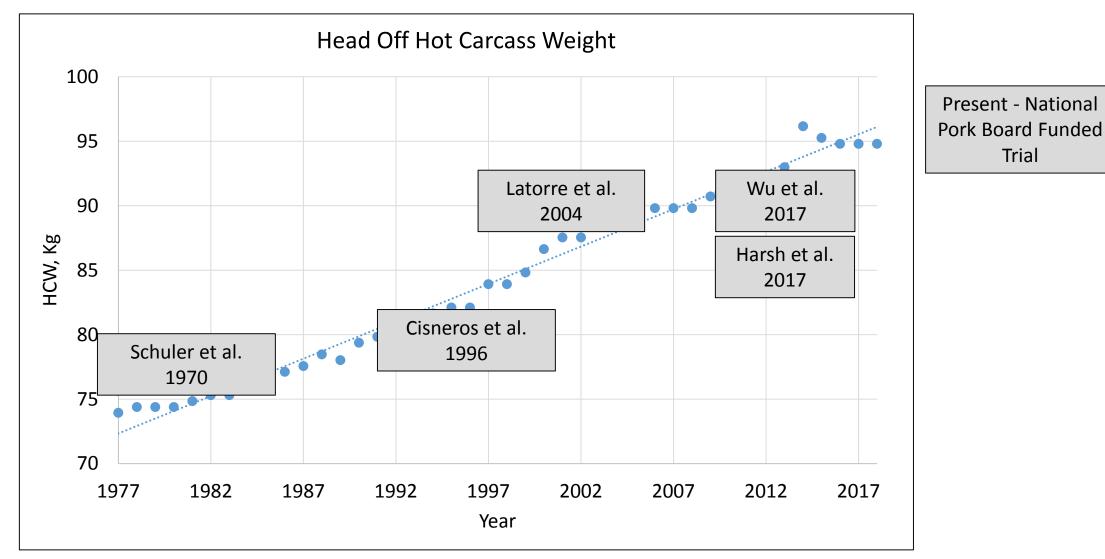



Photo: http://www.fao.org/faostat/en/#data/QA/visualize


Why the Focus on Heavy Market Weights?

• The math makes sense:

• Can we achieve increased margin without deteriorating product quality?


Heavy Weights are Not a Recent Trend in the U.S.

USDA, NASS. 2019

Studies for Discussion

USDA, NASS. 2019

Science has focused on this trend for some time

-	Slaughter Weight				
Trait	45.5 Kg	68.2 Kg	90.9 Kg	113.6 Kg	Std Dev
Back Fat, cm	2.01 ^a	2.88 ^b	3.57 ^c	4.02 ^d	0.15
Loineye Area, cm	14.76ª	19.81 ^b	23.45 ^c	25.87 ^d	0.38
Marbling Score	1.27 ^a	1.56 ^b	2.02 ^c	2.70 ^d	0.62
Color Score	2.42	2.17	2.24	2.58	0.56
Shear Force, Kg/1.9 cm		5.23	4.92	5.08	3.07

^{abcd} means with differing superscripts differ at P<0.05

Within increasing slaughter weight carcass were heavier muscled and fatter

Shuler et al. 1970. J. Anim. Sci. 31:31-35

Science has focused on this trend for some time

-	Slaughter Weight				
Trait	45.5 Kg	68.2 Kg	90.9 Kg	113.6 Kg	Std Dev
Back Fat, cm	2.01 ^a	2.88 ^b	3.57 ^c	4.02 ^d	0.15
Loineye Area, cm	14.76ª	19.81 ^b	23.45 ^c	25.87 ^d	0.38
Marbling Score	1.27ª	1.56 ^b	2.02 ^c	2.70 ^d	0.62
Color Score	2.42	2.17	2.24	2.58	0.56
Shear Force, Kg/1.9 cm abcd means with differing sup		5.23 differ at <i>P</i> <0	4.92 0.05	5.08	3.07

means with differing superscripts differ at P<0.05

Color and tenderness were not impacted by slaughter weight

Heavy Weights of the 1990s

Live Weight Range Evaluated: 100 – 160 kg

- Percentage of loin increased with increasing weight
- Percentage of ham, shoulder, and sparerib decreased with increasing weight
- Weight of trimmed boneless cuts increased with increased slaughter weight
 - Reduced when calculated as a percentage of side weight
- Increased processed belly/bacon yield with increased weight

Heavy Weights of the 1990s

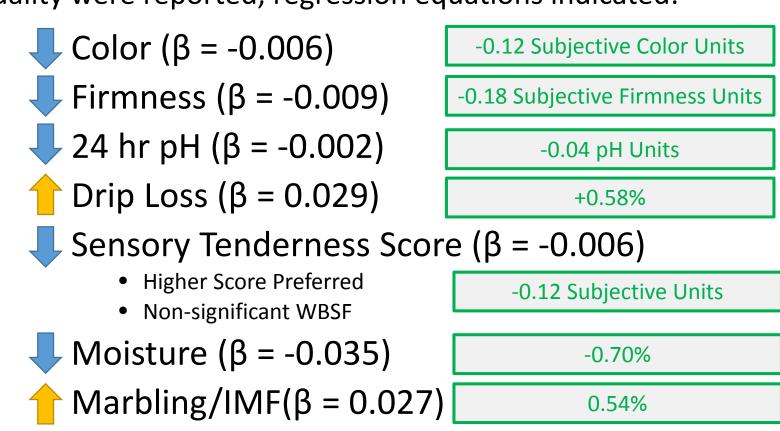
Limited, <u>small</u> changes in Pork Quality were reported, regression equations indicated:

Slaughter Weight =

Interpreting β: For every 1 kg change in live slaughter weight, a trait is predicted to move x units Color (β = -0.006)

- 🖡 Firmness (β = -0.009)
- **4** 24 hr pH (β = -0.002)
 - **Crip Loss (β = 0.029)**
 - Sensory Tenderness Score (β = -0.006)
 - Higher Score Preferred
 - Non-significant WBSF
 - **Μoisture** (β = -0.035)

Marbling/IMF($\beta = 0.027$)


Heavy Weights of the 1990s

Limited, <u>small</u> changes in Pork Quality were reported, regression equations indicated:

Slaughter Weight =

Interpreting β: For every 1 kg change in live slaughter weight, a trait is predicted to move x units

If we looked at a 20 kg increase in weight this would result in...

Heavy Weights of the Early 2000s

		Slaughter Weight, kg			Linear Response t Slaughter Weight		
	116	124	133	SEM	P-value	R ²	P-value
Initial Weight, kg	74.9	74.7	74.8	0.43	0.94		
Final Weight, kg	116.2	124.4	133.5	1.30	0.001		
From 75 kg to Slaughter	_						
ADG, g/d	843 ^a	788 ^b	769 ^b	18.5	0.05	0.59	0.01
ADFI, kg/d	2.69	2.56	2.68	0.056	0.23		
G:F, kg	0.313 ^a	0.309 ^a	0.287 ^b	0.003	0.001	0.61	0.001

^{ab} Means with differing superscripts differ at P < 0.05

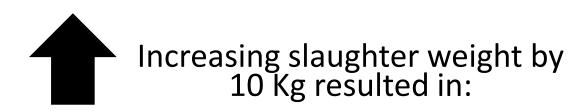
- ADG was decreased by 38 g/d for every 10 kg increase in slaughter weight
- G:F decreased 0.01 kg for every 10 kg increase in slaughter weight

Heavy Weights of the Early 2000s

	Slaughter Weight, kg					esponse to er Weight	
	116	124	133	SEM	P-value	R ²	P-value
Carcass Weight, kg	89.8 ^c	96.4 ^b	105.1 ^a	0.95	0.001	0.87	0.001
Carcass Yield, %	77.3 ^b	77.7 ^b	78.6 ^a	0.21	0.001	0.60	0.001
Backfat, mm	22.1 ^b	25.7 ^a	27.0 ^a	0.63	0.001	0.79	0.001
Loin L*	51.5 ^ª	49.9 ^b	47.3 ^c	0.55	0.001	0.21	0.05
Loin Marbling/IMF, %	2.5	2.6	2.7	0.22	0.85		
Shear Force, Kg	7.9	8.3	8.1	3.7	0.70		

^{ab} Means with differing superscripts differ at P < 0.05

- Heavier pigs produced darker product
- No impact on marbling or tenderness



2017 – What Do We Know So Far?

- Literature review conducted by Kansas State University
- Evaluated Three Key Areas:
 - Growth Performance
 - Carcass Composition/Subprimal Yield
 - Pork Quality
- Heavy weight market > 130 kg

2017 – Growth Performance

- Decreased cumulative ADG
 - 8 of 14 studies
 - Range: 3.6 to 54.9 grams
- Increased ADFI
 - 11 of 13 studies
 - Range: 52.7 to 163.3 grams
- Reduction in cumulative gain to feed
 - 14 of 14 studies
 - Range: -0.017 to -0.03

2017 – Average Subprimal Yield/Carcass Composition

- +0.41% Yield
- +1.8 mm Backfat
- -0.78% Fat-free lean
- +1.9 cm² Loin muscle area
- +2.2 cm Carcass length

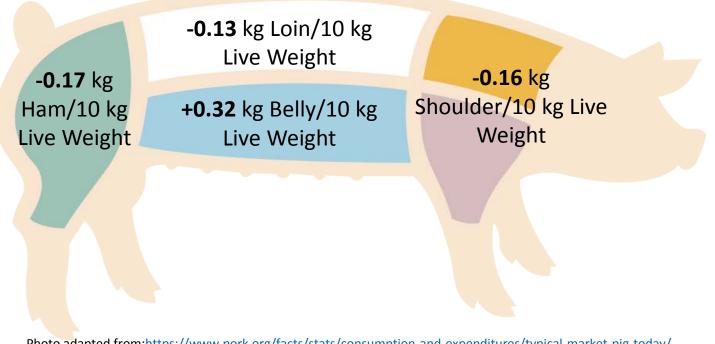
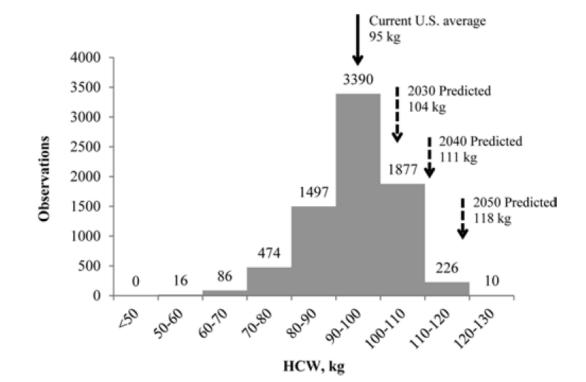
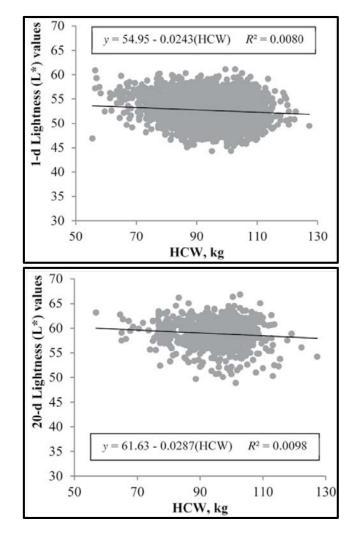


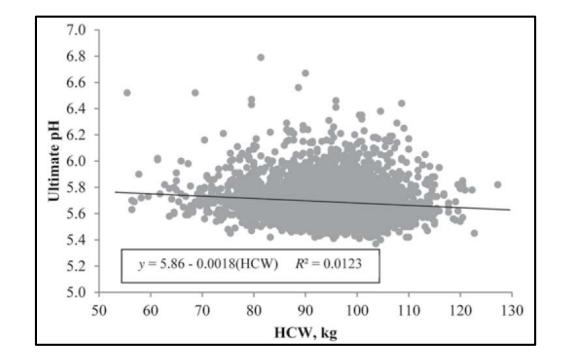
Photo adapted from: https://www.pork.org/facts/stats/consumption-and-expenditures/typical-market-pig-today/



2017 – Pork Quality and Heavy Weight Pigs

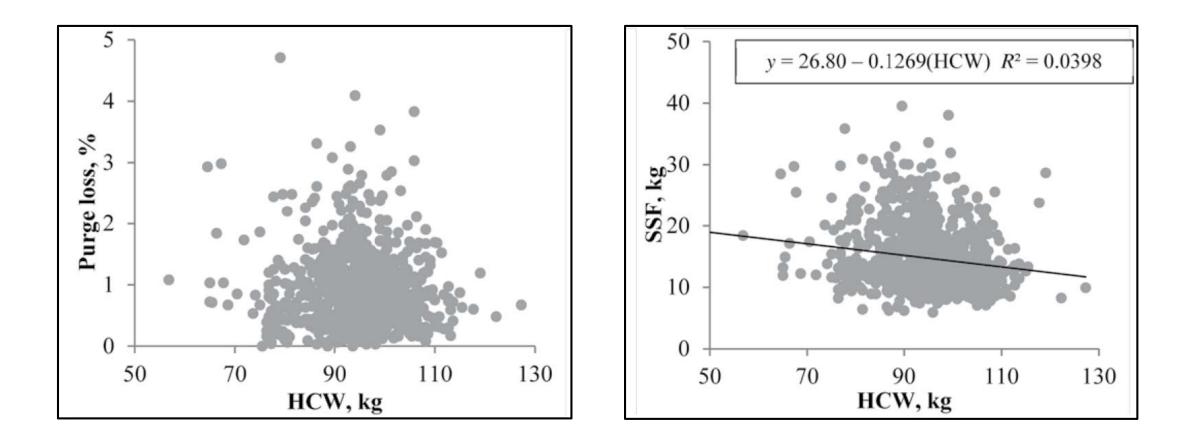
- Little agreement among data
- L*
 - N = 6 studies indicate an inverse relationship with weight
 - N = 4 studies indicate a positive relationship with weight
- Ultimate pH
 - N = 7 studies indicate an inverse relationship with weight
 - N = 2 studies indicate a positive relationship with weight
- Warner Bratzler Shear Force
 - N = 3 studies indicate an inverse relationship with weight
 - N = 6 studies indicate a positive relationship with weight


2017 – University of Illinois HCW Study

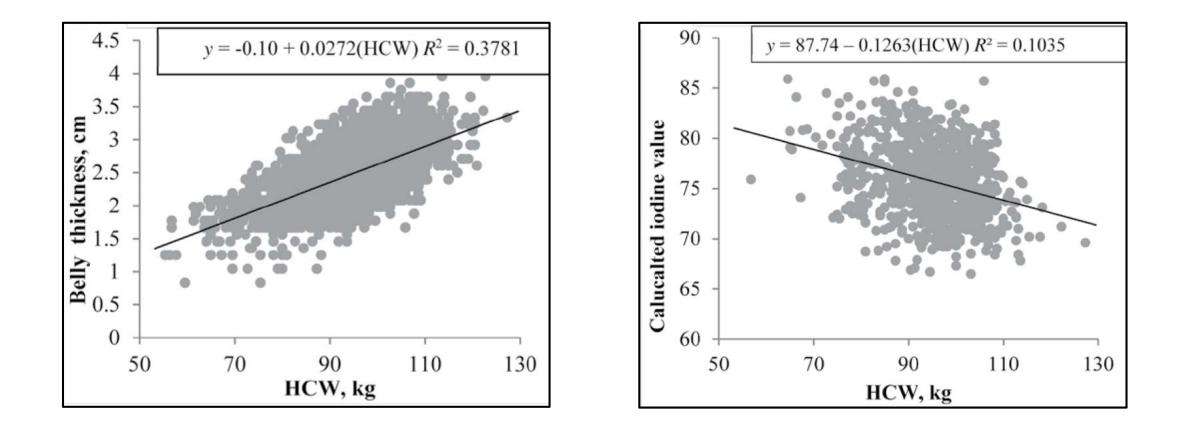


Harsh et al. 2017. J. Anim. Sci. 95:4958-4970

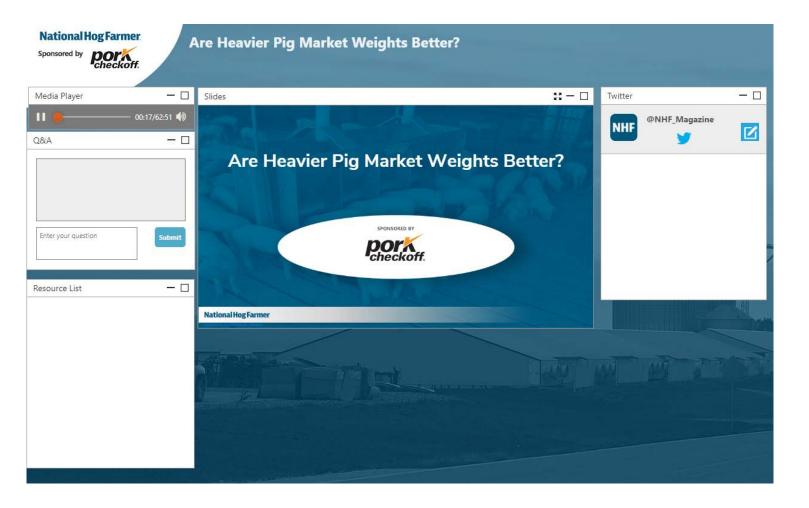
2017 – University of Illinois HCW Study - Loin



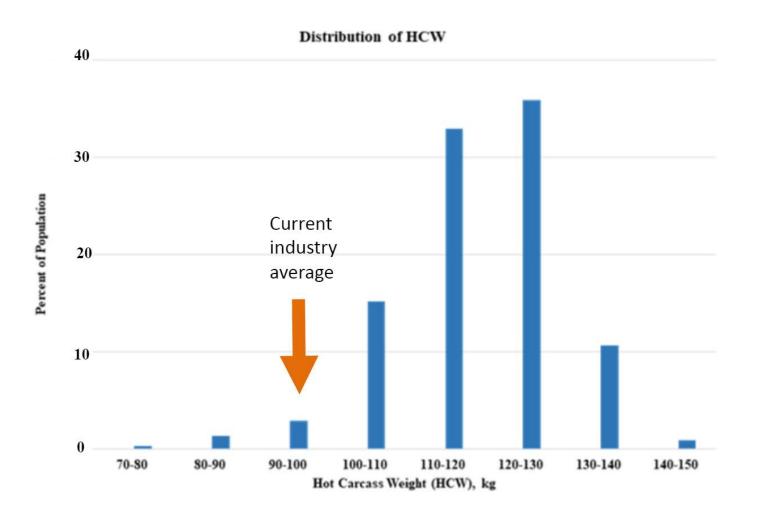
Harsh et al. 2017. J. Anim. Sci. 95:4958-4970


2017 – University of Illinois HCW Study - Loin

Harsh et al. 2017. J. Anim. Sci. 95:4958-4970



2017 – University of Illinois HCW Study - Belly



- Multi-institutional
 - Kansas State
 - University of Illinois
 - USDA Meat Animal Research Center
- Project Webinar conducted in August 2019
- PIC 327 x Camborough

Trait	R^2	P-value
Loin depth, mm	0.1278	<0.0001
Fat depth, mm	0.2097	<0.0001
Percent lean, %	0.2352	<0.0001
lodine value	0.0700	<0.0001
Loin pH, 1 day		Not Significant
Loin pH, 14 day		Not Significant
Loin L*, 1 day		Not Significant
Ham pH, 1 day	ay Not Significan	
Ham L*, 1 day		Not Significant

- Carcass composition traits were significantly related
 - Account for between 13% and 24% of variability
- HCW accounted for 7% of variability in iodine value
- No relationship among HCW and quality traits presented

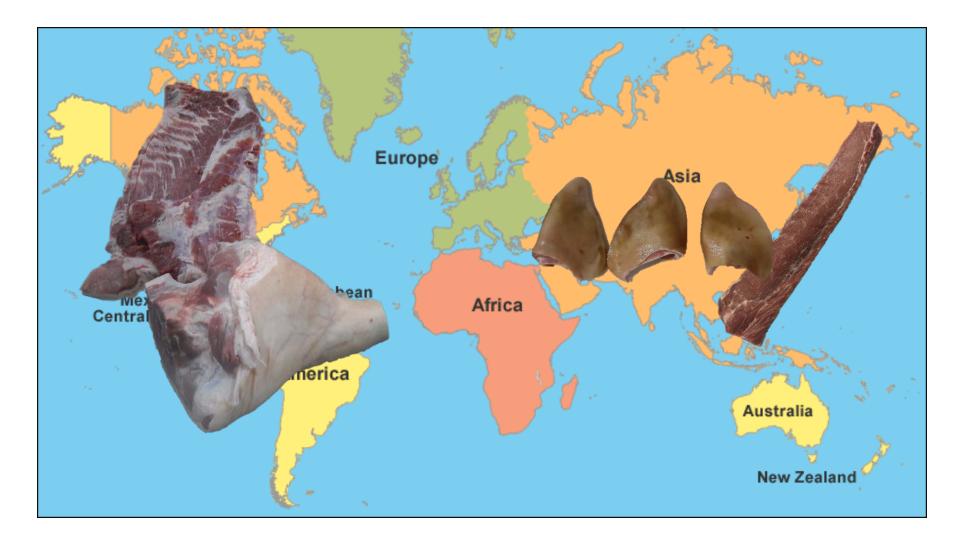
Trait	R ²	P-value
Loin depth, mm	0.1278	<0.0001
Fat depth, mm	0.2097	< 0.0001
Percent lean, %	0.2352	<0.0001
Iodine value	0.0700	<0.0001
Loin pH, 1 day		Not Significant
Loin pH, 14 day		Not Significant
Loin L*, 1 day		Not Significant
Ham pH, 1 day		Not Significant
Ham L*, 1 day		Not Significant

- Carcass composition traits were significantly related
 - Account for between 13% and 24% of variability
- HCW accounted for 7% of variability in iodine value
- No relationship among HCW and quality traits presented

Trait	R ²	P-value
Loin depth, mm	0.1278	<0.0001
Fat depth, mm	0.2097	<0.0001
Percent lean, %	0.2352	<0.0001
Iodine value	0.0700	<0.0001
Loin pH, 1 day		Not Significant
Loin pH, 14 day	Not Significant	
Loin L*, 1 day	Not Significant	
Ham pH, 1 day		Not Significant
Ham L*, 1 day		Not Significant

- Carcass composition traits were significantly related
 - Account for between 13% and 24% of variability
- HCW accounted for 7% of variability in iodine value
- No relationship among HCW and quality traits presented

	Slice Shear Force, kg			
HCW -	71 °C	63 °C		
<112, kg	11.9 ^a	10.7 ^a		
112-119.3 kg	10.9 ^b	10.1 ^b		
119.3-127.5 kg	10.4 ^b	10.2 ^{ab}		
≥125.7 kg	10.5 ^b	10.3 ^{ab}		


^{ab} Means with column differ at P < 0.05

- Consumer Visual Panels
 - Chops from heavier carcasses were found to be more desirable
 - Chop thickness impacted purchasing decision

- Consumer Sensory Panels
 - No negative discrimination against chops as HCW increased
 - As HCW increased palatability scores and overall like subsequently increased

Conclusions

- Heavy weight pigs make sense:
 - Production economics
 - Plant economics
 - Quality remains consistent
- We have shown consistently that we can increase weights of pigs
- Cooperation with PIC on heavy weight pigs only increases success

Thank you!